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This article presents a reduced-order modeling approach for simulation and control
of viscous incompressible flows. The reduced-order models suitable for control and
which capture the essential physics are developed using the reduced-basis method.
The so-called Lagrange approach is used to define reduced bases and the basis func-
tions in this approach are obtained from the numerical solutions. The feasibility of this
method for flow control is demonstrated on boundary control problems in closed cav-
ity and in wall-bounded channel flows. Control action is effected through boundary
surface movement on a part of the solid wall. Our formulation of the reduced-order
method applied to flow control problems leads to a constrained minimization prob-
lem and is solved by applying Newton-like methods to the necessary conditions of
optimality. Through our computational experiments we demonstrate the feasibility
and applicability of the reduced-order method for simulation and control of fluid
flows. (© 1998 Academic Press
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1. INTRODUCTION

Control problems that involve partial differential equations as state equations
formidable problems to solve in real time. One such situation arises in control of fl
dynamical systems in which the state equations are the Navier—Stokes equations; see
[2-4, 6-8, 16] for works on fluid flow control.

In this article, we discuss a reduction-type method which may help to overcome t
difficulty. This method, called the reduced-basis method, uses functions as basis funct
which are closely related to the problem that is being solved. This is in contrast to |
traditional numerical methods such as the finite difference method which uses grid functi
as basis functions or the finite elements method which uses piecewise polynomials for
purpose.

We will use the so-called Lagrange approach to generate basis functions in our simula
and control discussions. In the Lagrange approach one uses solutions of the proble
various parameter values as basis functions. We will also briefly discuss another appr
called the Hermite approach which uses solutions and their first derivatives at vari
parameter values as basis functions. Finally, we mention the Taylor approach in which
uses solutions at a point, along with their derivatives as basis functions.

The reduced basis has been applied to structural mechanics problems with conside
success, see [1, 11-14]. Its use for high Reynolds number fluid flow calculation has b
shown; see [15].

Our goal here is first to test and validate the reduced-basis method for fluid flow simt
tions. Then we use the resulting reduced-order model for control problems in fluid flov
We will investigate both steady and unsteady flows and demonstrate the feasibility of
reduced-order model for simulation and control of fluid flows by performing computatio
on cavity, backward-facing-step channel flow, and forward-facing-step channel flow. .
optimal control problem is first formulated and then this problem is approximated by t
reduced-basis method. The resulting reduced-order control problem is solved for the «
trol. As a consequence the computed control provides a suboptimal control to the orig
optimal control problem. Our numerical results indicate that the control computed tl
way can indeed give very good performance when applied to the original optimal cont
problem.

1.1 Reduced basis subspacesn order to illustrate the reduced-basis method, we as
sume for ease in exposition that we are dealing with nonlinear dynamics about stz
equilibrium points. Consider the parameterized stationary problem

E(y,u) =0 forueR,ye X, (1.2)

whereu represents some physical parameter, for example, a Reynolds number or visco
about which we choose to interpolate to obtain a reduced-finite-dimensional set of b
elements. In standard finite element approximations, one approximates X with a piece\
polynomial space. However, the choices for the reduced basis method are different.
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The Lagrange subspachn this case, the basis elements are solutions of the nonlin
problem under study at various parameter vajugsThe reduced subspace is given by

Xr=spay |y =y, j=1,...,M}.

This kind of subspace was used to study structural problems in [1]. A possible advanta
this choice is that updating the basis elements can be done one basis vector at atime i
of generating the whole space.

The Hermite subspachn this case the basis elements are solutions and their first deri
tives at various parameter values. The reduced subspace is given by

A 3
Xg = span{y‘ =y(uj) amda—y

Vi :1,...,I\7I}.
H’M=I’-j

The Taylor subspacén this case, one assumes at some valye,&ayu*, the solution
is known and it ha#/ derivatives. Then the reduced basis subsp&geés defined as

aly
Xr = spar{yj lyj = ol

i =o,...,|v|},

pn=p*

wherey! is obtained from successive differentiation of (1.1). This choice has been ex
sively used in the literature; see e.g. [11, 12] for structural analysis problems and [15
high Reynolds number steady state fluid flow calculations.

In our calculations, we only employ Lagrange and Hermite approaches due to the foll
ing reasons. The equation which is solved to findh the Taylor approach can be ill-posed
and one cannot continue to use the same basis elements generated at fixed paraimete
compute solutions when the parameter of interest is away from it.

2. THE REDUCED BASIS METHOD FOR VISCOUS FLOWS

In this section we formulate the reduced-basis method for viscous incompressible fi
modeled by the Navier—Stokes equations. The Navier—Stokes equations, when writt
primitive variables, are

U —vAu4+u-vu+Vp=f inQx(0,T], (2.1)
V.u=0 inQx(0,T], (2.2)

u=b onI x[0,T], (2.3)

u(0, X) = up(x) in <, (2.4)

whereu(t, x) and p(t, X) denote the velocity and pressure, respectiiglyx) is the body
force per unit mass; is the kinematic viscosity, angh is the initial velocity. Furthermore,
T is a positive constanh is the boundary velocity, and is a bounded region iR? whose
boundary id".

We choose a variational formulation and finite element method to approxim
(2.1)—(2.4), but other methods can also be used with the reduced-basis method. C:
(2.1)—(2.4) in appropriate variational form requires the introduction of some notations.
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2.1. Notations

We denote by 2(Q2) the collection of square-integrable functions definedand we
denote the associated norm py||o. Let

HY(Q) = {v e L(Q): g—;’ e L>(Q)fori =1, 2},
Hg (Q) = {v e H': v]o = 0},
L3(Q) = {q e L3(Q): / qdQ = 0}.

Q

We define the standard bilinear and trilinear forms associated with the Navier—Stokes p
lem,

a(u,v) = /QVu :vvdQ forallu,v e HY(Q);
here the colon notation stands for the scalar produd@®o1,
b(u, q) = —/qu -udQ forallu e HY(Q) Vg € L3(Q)
and

cu, v, w) = /(u -V)v-wdQ forallu,v,w e HY().
Q
For givenb € HY2(I") and the boundary condition
u=bonTI with /b~ndF=O,
r

we define
Vb ={ueHYQ):u=bonT, b e HY2")}.

We now summarize some properties of these linear forms. We have the coercivity relat
associated witla(, -),

a(u, u) = [[Vul|3 > Collu? forallu e H3(S)

which is a direct consequence of Poirearéquality. The formag-, -), b(-, -), andc(, -, -)
are all continuous; in particular, we have

lc(u, v,w)| < Cyllullaliviialiw].

The bilinear formb(., -) satisfies the following inf-sup condition:

inf  sup [ qV-vdQ > Cylq| IV]1.
geL3() veHi(Q) /@
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2.2. Variational Formulation.

We derive a variational formulation of the problem (2.1)—(2.4) by multiplying both sid
of (2.1) and (2.2) by € H}() andq € L%(Q), respectively, and applying the divergenc
theorem. The variational problem becomes
Findu e L0, T; Vp) and pe L%(0, T; L3(£2)) such that

(Ug, V) + %aa(u, V) 4+ c(u, u,v) +b(v, p) = (f,v) forallveHi(Q), (2.5)

b(u,q) =0 forallgelL3(R), (2.6)
and
u(0, x) =up(x) forx e Q.

Atypical finite element approximation of (2.5)—(2.6) is to seek solutidiis -) € VE C Vp
andp"(t, ) € § C L§(Q),

1
(up, v") + Eea(uh, v e, u, v + b, pM = (F,v") forallv e V) (2.7)
and
bu",g") =0 forallq" e S}, (2.8)

whereV{ ¢ H}(R2) andS) c L3() are approximating finite element subspaces, and v
are settingRe = 1/v which is the Reynolds number; i.e., the variables are appropriat:
nondimensionalized. We will denote the solution of the finite-dimensional equations (2.
(2.8) at a fixed time; by u"(t;, -) and p"(t;, -). Further details regarding the notations an
formulation given in the last two sections can be found in [17].

2.3. The Reduced-Basis Method and Reduced-Order Model

In this section, we will present the reduced-basis method and the reduced-order mr
for viscous flows.

2.3.1. Case I: Steady state.Let us illustrate the derivation of a reduced-order mod
using the Lagrange basis elements using the formalism and terminology used in [1-
Let the Lagrange basis elemeiiis} be given byg, = u". One can generate such basi:
elements by solving

1
Eea(uh, vl e, u, v + b, pM) = (F,v")  forall v € Vi (2.9)
and
bu",g") =0 forallg" e S (2.10)

for different values of parameter, whereu = Re Thus, given a set of values for the
Reynolds numbefu; : i =1, 2, 3, ....M}, we solve (2.9)—(2.10M times to determine the
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set{0m:m=1,..., M}, where(; = u"(u;). We then set
VM = spar(; ;i =1, ..., M} c V.

We next briefly describe thidermite approactin this setting. Let; = u(u;) € V" and
ul = (Au"/du)(wi) € V§; then solve

1 1
—a(uf, v") + cu], up, v") + c(Uo, uj, V") + b(v", p)) = Sa(ui, v forallv" e V§
Hi M

and
b(u/,q" =0 forallg"e S
to obtainu;. We then set
VM = sparfui,u i =1,..., M}.

Once we have a set of reduced basis functions we writesttheced-order modeh the
form: seekuM € VM < VP such that

1
Eea(u"",v"") +cM, uM vy = (f,vM) forallvM e V¥, (2.11)

whereVg = Vv™n VB. Note that, by construction™ automatically satisfies (2.10) and,

due to the global support of the reduced-basis elements, the system (2.11) is equivale
a dense lower order nonlinear system of equations as opposed to the system (2.9)—(
which is a sparse nonlinear system due to the local support of the basis. Our computati
experiments and the other computations reported in the references mentioned earlier -
to indicate that an accurate approximation can be obtained for a large range of paran
values using 5 to 10 basis elements. Therefore, although the resulting reduced-order nr

is dense, it is small compared to the sparse but large systems that result from the star
basis functions.

2.3.2. Case Il Time-dependent statel et us illustrate the derivation of a reduced-
order model using the Lagrange basis elements. Let the Lagrange basis elémgnts
be given byg; = u"(t;, ). We can generate such basis elements by using the implig
Euler method with appropriate step size to integrate (2.7) in time, and then we se
the discrete time solutiof(;} at a given set of valueft;},i =1, ..., M. We then obtain
VR =spari(; :i =1, ..., M}. Due to the nonhomogeneous boundary condition, we ha
that the reduced-basis subspat® consists of the trial and test functions, where the tes
functions inVg = VR NV} satisfy the homogeneous boundary condition. Once we have
set of reduced-basis functions we write taduced-order modéh the form: seekiM(t, -) €
VM = sparju; :i =1, ..., M} c V" such that

1
(M, vM) + R—e(VuM, vMy + WM. vuM M) = §,vM) forallvM e VY, (2.12)

M

M, vMyr = (up, vMr  forallvM e VM|, (2.13)
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and
(U0, x), vM) = (up(x), v™) forallvM e V), (2.14)

whereV) = VM N V5,

3. COMPUTATIONS OF THE REDUCED ORDER MODEL

In this section we will test the performance of reduced-order model (2.11) in two w
known test problems in fluid flows, namely driven cavity flow and backward-facing-st
channel flow. We will demonstrate via these tests that the reduced-basis method c:
used, not only in the interpolary mode, but also in the extrapolary mode with very few b
elements. Let us first consider the stationary case.

3.1. Stationary Driven Cavity Problem

The problem we are about to describe is a classical driven cavity flow. Various reseatrc
have studied this problem computationally using a variety of methods and formulatic
We can think of this as a fluid-filled cavity bounded by rigid wallxat 0, x =1,y = 0,
and a top wall that is moving with unit speed. We consider, of course, a two-dimensic
situation. The domain is divided into rectangles and we further divide each rectangle
triangles. Then we choose quadratic polynomials defined on these triangles to approxi
velocity fields, and for the approximation of pressure we choose linear polynomials def
on the same triangles.

In all our computations reported in this article, we define the Reynolds numliiee as
V - L/v. In the driven cavity problemy = top surface velocityl. = cavity dimension,

v = kinematic viscosity of the fluid. We assume throughout the simulationsvthat 1,
L =1, and henc®e= 1/v.

The computation using the reduced-basis method is done by first selecting basis elet
and then defining test functions and trial functions such that they are linearly indepen
and the test functions satisfy homogeneous boundary conditions. We generate basi
ments{u; }M ; ¢ VM for the reduced-order model by computing the solutiord alifferent
Reynolds numbers to the full steady state Navier—Stokes equations,

Riea(uh,vh) +cu", u", v + b, p" = (F,v")  forallv" e VB, (3.1)

bu",g" =0 forallg"e S}, (3.2)

andu = (1, 0) on the top boundary and everywhere else on the boundary no slip bounc
conditions are assumed.
Given the basis elements}™ ,, the reduced-order solutiar! is formed by setting

M
uM = Zai‘bi’ (33)
i=1

where¢; =uj;1 —U;,i=1,2,..., M — 1, and¢g,, = uy. We further takexy, = 1 so that
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Ua=0
Uy=0 uy=0
Us=0 Q u2=0
uy=0
u2=0

FIG. 1. Schematic of driven cavity.

the boundary conditions are satisfied. The solutiynis computed from

1
Eea(u"", vy + M, uM vMy = §,vM) forallvM e VY, (3.4)
whereVY = sparf¢; :i = 1,..., M — 1} is the span of the test functions.
Let us rewrite (3.4) using the representation (3.3) withe R. Using (3.3) and taking
W=¢,j=1...,M—-1,in(34),wegetfoj =1,...M -1

g M-t M-1 M-1
Ee;ai (Véoi, V¢J) + <Zai¢i . VZaquk, ¢a]> = (f, ¢j)’

i=1 k=1
or equivalently, the following nonlinear algebraic equations
Aa+o'Na =F, (3.5)

where the stiffness matrid = (A4;j), the forcing termF = (F) anda = (o),

Aij

1
?e(vd’i’ Vo),
Fi = (Fv ¢|)

Moreover, the quadratic form' o corresponds to the trilinear form in (2.5) restricted
to the reduced basis spa¢& and is given bya!Na); = a!P;a, whereP; € RM*M is
defined by

Pk = (¢ - Vi, d)).
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FIG. 2. Reduced solution with 4 basiRe= 1200.

We choose the basis elements for the reduced-order model (3.5) by computing the
driven cavity flow at Reynolds numbers, 100, 300, 500, 700, and 900. The computat
are done with a 2% 29 nonuniform mesh. Our goal here is to show one can use |
reduced-basis method in an extrapolary mode and still get reasonable results. We cl
the Reynolds numbers to be 1200 and 1500 and compare the reduced-order model sc
with the solution to the full model at those Reynolds numbers.

The nonlinear algebraic equations (3.5) were solved using the Newton'’s iterative met
The computed solutions of the driven cavity flowRé¢ = 1200 using the reduced-order
model and the full model are in good agreement, (see Figs. 2—3). We also studiec
effects of the number of basis elements used in the reduced-order moddhk-fidmen
difference between the reduced and full solution is given in Tables 1-2 and a comparist
u-velocity along the vertical centerline of the cavity is given in Figs. 4-5. They all indice
that the reduced-basis method can, in fact, give very good results, even in the extrap
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TABLE 1
|, Difference of Solutions atRe = 1200

Basis elements 2 3 4 5

[Ur — Uz 3989 .06913 .0600 .04322

mode and with few elements. Similar results have been reported in [15] using the Ta)
approach.

Finally, we turn to a comparison study of the Lagrange approach versus the Hern
approach. The basis elements for the Lagrange approach were selected at Reynolds nu
100, 300, 500, and 700, and for the Hermite approach they were selected at 300 and 700
comparison was carried out by computing the driven cavity flow at Reynolds number 12
For the Hermite approach the test function selectiapyis= U70p — Usgo, ¢ = 300U’ |300,
and¢,; = 700U |7g0. The solution is then sought as

3
U= U0+ > cid;
i=1
and then the nonlinear algebraic equations (3.5) were solved using the Newton itere
method.

Figure 6 shows the-velocity at the vertical centerline of the cavity using the Hermite an
Lagrange approaches. Thenorm difference between the full solution and the reduced
basis solution using these two approachesgreu |, = 0.0889 andu, —u¢|, = 0.0766,
whereu, is the solution obtained using the Lagrange approachigigithat obtained using
the Hermite approach. According to our comparison with the driven cavity problem, t
performance of the Hermite approach is better than that of Lagrange.

3.2. Unsteady Channel Problem

We demonstrate the feasibility of the reduced-basis method in unsteady problem:
studying the channel flow past a backward-facing step. This problem has been extens
studied both experimentally and computationally. A schematic of the geometry is giver
Fig. 13. The height of the inflow boundary is 0.5 and that of the outflow boundaryis 1. T
length of the narrower section of the channel is 1 and that of wider section of the char
is 7 (the total horizontal length is 8). We choose the viscosity constani/1000. At the
inflow we assume the flow is parabolic and we takg) = u; = 8(y — 0.5)(1 — y). At
the outflow boundary, we again assume the flow is paraboliciaadi, = y(1 — y). The
prescribed body forckis chosen to be zero.

Triangular finite elements are chosen to discretize the domain. This choice is nat
since we use a nonuniform mesh with local refinements around the corner of the step

TABLE 2
|, Difference between Solutions aRe = 1500

Basis elements 2 3 4 5

U — Ugl2 5504 .0729  .0698  .0545
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1.0 1 1 1 T

—a—— SOLUTION TO THE FULL SYSTEM

—+—— REDUCED SOLUTION USING 3 BASIS VECTORS
—O—— REDUCED SOLUTION USING 4 BASIS VECTORS
—>—— REDUCED SOLUTION USING 5 BASIS VECTORS

0.5 |-

Y VALUE

0.0 0.2 0.4 0.6 0.8 1.0
U VELOCITY

FIG. 4. Comparison of reduced basis solution to full solutioRet= 1200.

near the top of the no-slip wall. The velocity and pressure are approximated by piece
quadratic and piecewise linear polynomials, respectively.

We generate basis elemefiss}M ; ¢ VM for the reduced-order model by computing the
solutions atM different times for the full unsteady Navier—Stokes equations:

d 1
<auh, vh) + %a(uh,vh) + e, u", vy + b, pMy = (f,v") forallv" e V5 (3.6)

bu",g" =0 forallg"e S, (3.7)

and we assume fully developed flow at the inflow and outflow boundary. Everywhere
on the boundary the no-slip boundary condition is assumed.

1.0 T T T T o]

——a—— SOLUTION TO THE FULL SYSTEM

——+——REDUCED SOLUTION USING 3 BASIS VECTORS
—o—— REDUCED SOLUTION USING 4 BASIS VECTORS
—o—— REDUCED SOLUTION USING 5 BASIS VECTORS

o
B

Y VALUE

ol
o

0.0
U VELOCITY

FIG.5. Comparison of reduced basis solution to full solutioRat= 1500.



414 ITO AND RAVINDRAN

1.0 I 1 1 1

——0— SOLUTION TO THE FULL SYSTEM
—— REDUCED SOLUTION USING HERMITE
—— REDUCED SOLUTION USING LAGRANGE

o

.5

Y VALUE

o
o
D

0.0 0.2 0.4 0.6 0.8 1.0
U VELOCITY

FIG. 6. Comparison of Hemite solution to Lagrange solution with 4 basis elemeRis=at1200.

Given the basis elements; } ;, the reduced-order solutiar is formed by setting

M
uMt) =) ait)g;. (3.8)

i=1

where¢; = Ui;1 — Ui =1,2,..., M — 1, and¢,, = um. We further takexy = 1 so
that the boundary conditions are satisfied. The soluifbris computed from

d 1
(au'\",v'\"> + Eaa(u"",v"") +cM uM VM) = F,vM) forallvM e V', (3.9)

whereV¥ = sparf¢; :i =1,..., M — 1} is the span of the test functions.
Let us rewrite (3.9) using the representation (3.8) wjttt) € R. Using (3.8) and taking
VR=¢,,j=1...,M—1,in(3.9),wegetfoj =1,...,M —1landt € |

M-1

1 M-1 M-1 M-1
D_GO@ ¢+ 2> (V. V) + (Zai O - VD kO, ¢,—>
i=1

i=1 i=1 k=1

M-1

=f.¢). > 0. ¢)) = (U ¢)),

i=1

or equivalently, the nonlinear ordinary differential equations

Ma(t) + Aa(t) + a'Na = F(t),
(3.10)

Ma(0) = U°,

where the mass matrix! = (M;; ), the stiffness matrid = (A4;; ), the forcing ternF = (F),
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FIG. 7. Full solution whert =10 andRe= 1000.

a = (aj), and the initial conditiotd® = (U?):
Mij = (i, ¢)),
1
Aij = R—e(v¢iav¢j),

Fi(t) = (F(), ¢),
U2 = (uo, ¢)).

We selectedt;} at 11 time instances between 1 and 11 for the basis element generatic
the construction of (3.10). Then the initial value problem for the nonlinear ODE (3.10) v
solved using the implicit Euler method for the time discretization with the time step 1(
and the Newton iterative method. The computational domain was divided into triangles
a refined grid near the flow separation. Our computational experiments on the back
facing step channel flow and on unsteady cavity flow (not reported here) indicate the «
and promising ability of the reduced-order model in predicting the dynamics of fluid flo
Figures 7-8 are the channel flow computations with the full model and the reduced-c
model at timet = 10, respectively.

4. CONTROL OF REDUCED ORDER MODEL

In this section, we will formulate some optimal control problems in fluid flows usir
boundary surface movement as the control mechanism. We define reduced-order ct
problems using the reduced-basis method and the reduced-order models developed
previous sections. The resulting reduced-order control problems are then solved vi
necessary conditions of optimality by applying Newton’s method.

In order to develop the framework for the application of the reduced-basis method
the control of fluid flows, let us first formulate an optimal control problem:

Minimize 7 (u, g) 4.1)
subject to
1
—%Aquu-VquVp:f inQ, (4.2)
V.u=0 inQ, (4.3)
u|l—~1 = b7 (44)

qlwmmp

FIG. 8. Reduced basis solution whér= 10 andRe= 1000.
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and
l.]|r2 =JgrT. (45)

We discuss the boundary control problem and, thus, the body fasdexed. The function
g is the control input that influences the flow through the movement of part of the bound
I',, the functionb is a fixed boundary value of,;, andr is a unit tangential vector. We
note here that this control mechanism is nondestructive in the sense that no mass is a
to the system.

A variational form of (4.2)—(4.5) is defined in the unsteady setting as:

Findu € V, and pe L3($2) such that

Riea(u, V) 4+ c(u, u,v) + b(v, p) = (f,v) forallve Hé(Q) (4.6)
and
bu,q) =0 forallg e L3(). 4.7

We will study two control problems that are cast in the framework of (4.1)—(4.5):

(C1) The cavity control problem with the cost function

J ) =/ lu — ug|?dS2.
Q

(C2) The channel control problem with the cost function
J ) =/ |V x ul?dS.
Q

Regarding the set of admissible contrgiswe assume that the skt of admissible
controlsg is closed and bounded IR.
Defining the set

S={ueHYQ):gel, usatisfies (4.2)—(4.5)

we have the following theorem regarding the existence of optimal control (see, e.g. [3
6, 7, 16] for a detailed discussions on this topic).

THEOREM 4.1. Supposé/ is compact. Then S is boundedH1(2) and the control
problemg(C;) and(C,) have solutions.

Proof. An outline of the proof follows. First we define appropriate extensigremndus,
to the boundary values (4.4) and (4.5), respectively, and redefine (4.2)—(4.5) with a cha
of variableu = v + gu; + uy such that the velocity now satisfies homogeneous boundary
values. The next step is to estimate the terms in the variational form of (4.2)—(4.5) using
coercivity and continuity properties of the bilinear and trilinear forms and the antisymme
property of the trilinear form.

The second assertion follows from the observation that the cost functionals are wes
sequentially lower semicontinuous and bounded below by zero, the solutBisetunded
in a Hilbert spaceH(R2), the seti/ is compact, andH1(Q) is compactly embedded in
L4(RQ). Then, if we take a minimizing sequena&,, g») € S x U, there is a limit ¢*, g*)
to this sequence and the limit is in fact a minimum to the control problem. |
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To solve the control problems, we will use constrained minimization techniques bz
on the necessary condition of optimality. Let us first derive the necessary condition
optimality for our control problems. To facilitate the forthcoming discussion we cast 1
control problems in the abstract settifi@r (u, g) € H3(Q) x U

Minimize 7 (u, 9)
subjectto G(u, p,g) = 0andH(u) =0,

wheregG(u, p, g) = 0 now represents the Navier—Stokes constraint (4.6)Faqd= 0) is
the divergence-free condition (4.7). Then the Lagrangian can be written as

E(V7 p’g’k70):j(u’g)+ <A’g(u7 p’g)>+<67H(u) >7

whereu = v 4 gu; + Uz and ando are Lagrange multipliers. The existence of Lagrang
multipliers is guaranteed by the regular point condition; i.e., the linearized constrair
surjective. Before discussing the regular point condition further, let us define the variati
form of the gradient of the constraints. Giveg, g, h) € H3(Q) x L3(Q) x R,

1
<¥,GU 909X q.h>+<r,HWkx > = ﬁea(x + hug, ¥) + c(x + huy, u, ¥)
+c(u, x + huy, ¥) + b(q, )
+ b(X =+ hU]_, r)

forall (¥, r) € H3() x L3(£2). We then have the following equivalent solvability condi:
tion for the regular point condition:

Setting® = x + hu; the solvability condition can be written as: giver H~1(Q) find
® € HY(Q) andr € L3() such that

1
%a@, V) 4+ c(®,u, ¥) +c(u, ®,T) +b(P,r)= <s ¥ > foral® e H}(Q)

and
b(®,q) =0 forallge L3(S).

The solvability of this system can be shown at least when the data are small. Next
result of the regular point condition [10], we have

THEOREMA4.2. Suppose the regular point condition is satisfied. Then we obtain the fil
order necessary condition f@w, p, g, A, o) € H3(Q2) x L3(Q) x R x H}(R2) x L3(Q)

oL 1

+<J'(u),x>=0 forall x € H}(Q), (4.8)

oL
@ =a(uy, A) +c(u, ug, A) +c(ug, u, A) +b(u, o)+ < J'(U),u; > =0, (4.9
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and
AL )
%(q) =b(A,q) =0 forallq e L5(2). (4.10)

The system (4.6)—(4.10) characterizes the optimal control and optimal states and we
this the optimality system.

4.1. Reduced-Order Control Problem

Using the notations and the framework introduced in Section 3, we can cast the con
problems €;) and () in the generateduced-order control formulation

Minimize J(x) = (%xtgx —x-d+ c)
subject to

AX+ X Nx =0,

wherex = (a, u)" is the state. Moreover, for the control proble@i)(

1
Qij=(¢i.¢). di=(Uqs¢) C= §|ud|2
and for the control problentg)
Qij=(x¢.,Vxg), d=c=0

Following the derivation of the optimality system given for the optimal control probler
(4.1)—(4.5), one can derive an optimality system for the above reduced-order control prob
(PR). In the numerical simulations we report in the sequel we solve the optimality syste
corresponding to the reduced-order control probl&f)(by applying Newton’s method.

4.2. Control of Driven Cavity Flow

In this section we formulate and numerically solve a control problem in a driven cav
using the reduced-basis method. The problem is that of finding the bottom surface velo
g such that the fluid velocity is driven to a desired statg. This control problem can be
cast as a minimization problem with the cost function

J () :/ lu— ug|?dQ
Q

and subject to the constraint that the fluid obeys the equation of motion, whésehe
desired velocity field.

The geometry of the problem and the finite element approximations have already b
discussed in Section 3.1. Replacing the cost functior€ih iq the abstract problem, the
control problem for the driven cavity is written as

Minimize J (u) = / lu — ug|?d$2 (4.11)
Q
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u=g

FIG. 9. Schematic of controlled driven cavity.

subject to
1
Eea(u, V) +c(u,u,v) + b(v, p) = (f,v) forallv e H3(Q) (4.12)

and
b(u,q) =0 forallg e L3(%), (4.13)
Ulre, = (U, 0), Uln,=1(9.0), Ulr,= (0,0,

whereU P, g are top and bottom surface velocities, respectively. We wish to find the con
inputg such that the flow matches as close as possible the desired fldke top velocity
is fixed throughout the problem. Figure 9 gives the physical domain and the boun
conditions.

Using the reduced-basis method, the control problem (4.11)—(4.13) is first approxim
by a reduced-order control problem of the for@R). In order to achieve this, basis ele-
ments are computed with the boundary conditions described in Table 3. The test func
{¢1. ¢,} are chosen so that they have zero boundary conditions. The trial fuggtieinu,
corresponds to the control force satisfyipg|r,,, # 0 and it satisfies the zero boundary
conditions everywhere else. Then we seek the solution as

2
uM = U1+9U4+Zai¢i,

i=1

TABLE 3
Wall Velocities for Basis Vector Generation
Basis elements U, Uy Uz Uy
Top wall velocity 1 1 1 0

Bottom wall velocity 0 1 -1 1
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FIG. 10. Desired velocity field aRe= 500.

whereg is the control (tangential velocity at the boundagy)=u, — u; — ug, and¢, =
Uz — Ug + Ug. We takeV) = spari¢,, ¢,}.

The computation of the optimal control for the reduced-order control problem is carri
out in two steps: First the necessary conditions of the optimality system (4.6)—(4.10)
derived for the reduced-order control problem. Then this system is solved by apply
Newton’s method. As a consequence, the calculated control in general prosidesimal
control to the original control problem (4.11)—(4.13). The computations for this proble
were done with 2% 29 nonuniform mesh and the Reynolds number wag669 1/500).
The top wall velocity is taken to bg'°? = 1 and the desired velocityy is computed with
the bottom wall moving at one-half of the top wall velocity. We get congfl = 0.4806
in four Newton iterations and the corresponding boundary velocity therefore is 0.4806.
resulting flow field is given in Fig. 11. We also carried out computations to find the flo
field corresponding to the optimal control input computed from the reduced-order moi
which is given in Fig. 12. They all are in good agreement with the desired flow field give

in Fig. 10.
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FIG. 11. Controlled velocity field aRe= 500.
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4.3. Control of Channel Flows

In this section, we consider the problem of control of the channel flows. We will consi
two different geometrical configurations, namely the forward-facing step and the backw
facing step. Schematics of these geometries are given in Fig. 13 and Fig. 17. The aim
shape the flow to a desired configuration by means of controlled movement of the boun
along some part of the boundary. In this work we consider the minimization of vorticity

the flow. Thus, we consider the cost functional
T = / 1V x uPde,
Q

wherew = V x uis the vorticity. The control problem for the channel is posed in the for

Minimize J (u) = / |V x ul?d$2 (4.14)
Q
subject to
1
@a(u, V) +c(u, u,v) + b(v, p) = (f,v) forallv e H3(S), (4.15)
bu,q) =0 forallq e L3(), (4.16)

ulp, =b, and ulr, =gr,

whererl'; is part of the boundary where the boundary surface is moving (control inp
andr; is the rest of the boundary. Théne HY2(I") corresponds to the inflow, outflow

Uo=gd I

FIG. 13. Schematic of controlled backward-facing-step channel.
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boundary conditions and zero boundary conditions at the walls. glgthe magnitude
of the boundary surface velocity. In the following we will consider two channel geometri
and in each of them our choice of control portiba is not the only one possible. Our
particular choice is motivated by the fact that if one wants maximum influence in the flc
then the control has to be applied in that vicinity.

4.3.1. Case |: Backward-facing-step channel flovizirst we consider a control problem
in a backward-facing-step channel flow. We assume that the inflow and outflow are parak
as elaborated in Section 3.2. Figure 15 qualitatively demonstrates the situation for a |
Reynolds number. As mentioned previously, the aim is to shape the flow to a desi
configuration by controlled boundary movement. A desirable flow, of course, depends
the situation in which the flow occurs. Here our objective is to remove the recirculation t
occurs in the corner region. Thus, the control portignis taken to be the line segment
betweeny = 0 andy = 0.5 atx = 1, where we note that at = 1 is where the channel
changes its cross section area. Also, we take (1, 0); that is, the movement of the wall
is vertical and thug € R completely determines the control input.

Using the reduced-basis method, the control problem (4.14)—(4.16) is first approxime
by a reduced-order control problem of the for@R). In order to achieve this, basis ele-
ments are computed with the boundary conditions described in Table 4. The test funct
{¢1. . ... ¢4} are chosen so that they have zero boundary conditions. The trial fuggtion
corresponds to the control force such thal-, = 0 and¢gs|r, # 0. Then we set

4

U=ui+9gds+ > aid;,

i=1

where¢, = uz — 2Uz + Uy, ¢, = Ug — 3Uz + 2U1, ¢p3 = Us — 4Uy + 3U1, ¢, = Ug — Uy +
4u,, andgs = ug—U;. The reduced-order control problem was solved by applying Newton
method to the corresponding optimality system. Then, for the vorticity cost functiégal (
with the Reynolds number 2@0 = 1/200), we obtain the optimal contrg°®* = 0.2601
in five Newton iterations and the corresponding optimal boundary velocity therefore
—0.13005. The resulting flow is shown in Fig. 14. We also simulated the flow correspondi
to the optimal control computed from the reduced-order model and the result is show!
Fig. 16. The results show significant reduction in the corner circulation.

4.3.2. Case lI: Forward-facing-step channel flowThe second case we investigate is
the control of forward-facing-step channel flow. We assume that the inflow and outflow :
parabolic withu(y) = u; = y(1—y/3)/3andu(y) = u, = 3(3—Yy)(y—1)/8, respectively.
Figure 18 qualitatively demonstrates the situation for a high Reynolds number. Out objec
in this case is to remove the recirculation that occurs on the top of the step.

Using the reduced-basis method, the control problem (4.14)—(4.16) is first approxime
by a reduced-order control problem of the fo¢@R). In order to achieve this, basis ele-
ments are computed with the boundary conditions described in Table 5. The test funct

TABLE 4
Wall Velocities for Basis Vector Generation

Basis elements U Uy Uz Uy Us Us

Wall velocity 0 -0.1 -0.2 -0.3 -0.4 -0.5
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FIG. 15. Uncontrolled velocity field aRe= 200.

FIG. 16. Channel flow with optimal control input &e= 200.
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FIG. 18. Uncontrolled velocity field aRe= 1000.
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TABLE 5
Wall Velocities for Basis Vector Generation
Basis elements Uy u; Uz Uy Us Us
Wall velocity 0 0.1 0.15 0.2 0.25 0.3
{¢1. . ... ¢4} are chosen so that they have zero boundary conditions. The trial fuggfion

corresponds to the control force such thal-, = 0 and¢s|r, # 0. Then we set

4
U=Ui+0ds+ Y aidy,

i=1

wheregp,; = Ug — 33Uz + 2U1, ¢, = Ug — 2U3 + Uy, ¢p3 = Ug — 1.5u4 + 0.5u1, ¢p4 = Ug — 1.2uU5
+ 0.2u4, and¢5 = Ug — U1.

We take the control region to be the line segment between andx =5 aty = 3. Here
we note that ay = 3 is where the channel changes its cross section area. Also, we tz
7 = (1, 0), that is, the movement of the wall is horizontal and, like in the previous cas
g € R completely determines the control input.

Then, for the vorticity costC,), with the Reynolds number 10Q0 = 1/1000, we obtain
the optimal controf®" = 0.3041 in 17 Newton iterations and the corresponding optimz
boundary velocity therefore is 0.09120. The resulting flow is shown in Fig. 19. We al
simulated the flow corresponding to the optimal control computed from the reduced-or
model and the result is shown in Fig. 20. The results show significant reduction in the cor
circulation.

5. CONCLUSION

In this article we have presented a reduced-order modeling approach for simulation
control of viscous incompressible flows. The reduced-order models suitable for con
and which capture the essential physics were developed using the reduced-basis me
Numerical simulations performed on the reduced-order model demonstrated that it
be used, not only in the interpolary, but also in the extrapolary mode. Feasibility of t
reduced-order method for flow control was demonstrated on two boundary control proble
using boundary surface movement as a control mechanism. Through our computati

FIG. 19. Controlled channel flow éRe=1000.
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FIG. 20. Channel flow with optimal control input &e= 1000.

experiments we have demonstrated the feasibility and applicability of the reduced-c
method for simulation and control of fluid flows.
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